## **User Guide**



# Quick-Glia™ Astrocyte - SeV Kit (Large)

Catalog Number: AS-SeV-L

#### Introduction

The Quick-Glia<sup>™</sup> Astrocyte - SeV Kit (Large) facilitates rapid and efficient differentiation of human iPS or ES cells into astrocyte cells in just 28 days. Our proprietary transcription factor-based stem cell differentiation method uses the Sendai virus to produce astrocytes without a genetic footprint. Quick-Glia<sup>™</sup> Astrocyte differentiated cell cultures display typical astrocyte morphology and markers such as S100 Calcium Binding Protein β (S100β), Chondroitin Sulfate Proteoglycan 8 (CD44), Aldehyde Dehydrogenase 1 Family Member L1 (ALDH1L1), and mature astrocyte marker Glial Fibrillary Acidic Protein (GFAP). When handled and maintained according to the instructions in this user guide, astrocytes are viable long-term and are suitable for a variety of characterization and assays.

Scale: The Quick-Glia™ Astrocyte - SeV Kit (Large) contains a set of reagents for use with a total of 6

wells of a 6-well plate.

Related Products: Quick-Glia™ Astrocyte - SeV Kit (Small), Catalog Number: AS-SeV-S

Quick-Glia™ Astrocyte - Human iPSC-derived Astrocytes, Catalog Number: AS-SeV-CW

#### **Contents**

Upon receipt, store the reagents at the temperatures indicated in the table below. All reagents are shipped on dry ice.

| Contents             | Volume     | Storage        | Thaw             |
|----------------------|------------|----------------|------------------|
| QGA-SeV (undiluted)* | 100 µl     | -80°C          | On ice           |
| Component N1         | 2 x 830 µl | -20°C or -80°C | On ice or 4°C    |
| Component GA1        | 65 µl      | -20°C or -80°C | On ice or 4°C    |
| Component GA2        | 65 µl      | -20°C or -80°C | Room Temperature |

\*IMPORTANT! This kit contains Sendai virus (SeV) particles that are active at 33°C and become inactive at 37°C. SeV is non-pathogenic in humans, and humans are not natural hosts of SeV; however, Biosafety Level 2 (BSL-2) containment is required for its use. Please use a biological safety cabinet, laminar flow hood, and proper personal protective equipment in order to prevent mucosal exposure. More information on BSL-2 guidelines can be found at <a href="https://www.cdc.gov/labs/BMBL.html">www.cdc.gov/labs/BMBL.html</a>.

1

#### **Condition of Use**

This product is for research use only. It is not approved for use in humans or for therapeutic or diagnostic use.

## **Technical Support**

For technical support please refer to the FAQ on our website.

You may also contact us at cs@elixirgensci.com or call +1 (443) 869-5420 (M-F 9am-5pm EST).

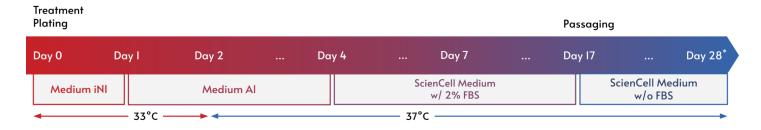
### **Required Consumables**

| Item                                                                                                                    | Vendor                             | Catalog Number |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|
| 6-well tissue-culture-treated polystyrene plate (e.g., Corning<br>Costar Flat Bottom Cell Culture Plates)               | Fisher Scientific                  | 07-200-80      |
| (Optional) 24-well tissue-culture-treated polystyrene plate (e.g., Corning Costar Flat Bottom Cell Culture Plates)      | Fisher Scientific                  | 07-200-740     |
| (Optional) 96-well tissue-culture-treated polystyrene plate (e.g., Thermo Scientific™ 96 Well Black/Clear Bottom Plate) | Fisher Scientific                  | 12-566-70      |
| DMEM/F12                                                                                                                | ThermoFisher                       | 21331020       |
| Neurobasal Medium                                                                                                       | ThermoFisher                       | 21103049       |
| GlutaMAX                                                                                                                | ThermoFisher                       | 35050061       |
| Penicillin-Streptomycin                                                                                                 | ThermoFisher                       | 15140122       |
| iMatrix-511 silk                                                                                                        | Elixirgen Scientific               | NI511S         |
| ScienCell Astrocyte Medium Kit:  Basal Medium  Astrocyte Growth Supplement  FBS  P/S                                    | ScienCell Research<br>Laboratories | 1801           |
| TrypLE Select Enzyme (1X)                                                                                               | ThermoFisher                       | 12563011       |
| 0.02% EDTA in DPBS                                                                                                      | Sigma-Aldrich                      | E8008-100ML    |
| Phosphate-buffered saline (without Ca** Mg**)*                                                                          | ThermoFisher                       | 20012050       |
| ROCK inhibitor Y27632                                                                                                   | Selleckchem                        | S1049          |
| Dimethyl sulfoxide (DMSO)                                                                                               | Sigma-Aldrich                      | D2650          |
| Geltrex hESC-Qualified, Ready-To-Use,<br>Reduced Growth Factor Basement Membrane Matrix                                 | ThermoFisher                       | A1569601       |
| (Optional) STEM-CELLBANKER**                                                                                            | AMSBIO                             | 11890          |
|                                                                                                                         |                                    |                |

<sup>\*</sup>PBS should be used at room temperature unless otherwise specified.

#### **Source hPSC Culture Conditions**

The Quick-Glia™ Astrocyte - SeV Kit (Large) gives the best differentiation results when source human pluripotent stem cells (hPSCs) have been maintained in StemFit® Basic04, StemFit® AK02N, StemFlex™ Medium, or other similar culture media which enable the maintenance of cultures by single-cell passaging. This protocol also assumes that the source hPSCs are cultured in a 35-mm culture dish or one well of a 6-well plate. If iMatrix-511 silk is routinely used as a coating substrate, prepare culture dishes or wells precoated with 0.25 µg/cm² iMatrix-511 silk diluted in 2 ml chilled PBS per well or dish for this kit.


- The protocols and reagents for StemFit® Basic04 and iMatrix-511 silk culture conditions are available at Elixirgen Scientific (Catalog Numbers: ASB04-C, NI511S).
- Differentiation should not be performed until the cells are at least 14 days post-thaw.
- We recommend preparing a minimum of 2 x 10<sup>6</sup> viable hPSC for use with this kit. This is usually obtained by using 2 wells of a 6-well plate at 50-70% confluency.
- For optimal differentiation, hPSC confluency should be around 50% to 70%. Do not use wells more than 90% confluent.

<sup>\*\*</sup> This is only required if you intend to cryopreserve the cells after differentiation.

#### Workflow

**IMPORTANT!** This workflow requires a humidified 33°C, 5% CO<sub>2</sub> incubator. Before starting this protocol, please make sure the temperature is stable at 33°C.

Note: This protocol assumes that Day 0 is a Monday.



<sup>\*</sup> From Day 28, users may maintain differentiated cells in the maintenance medium best suited for their needs. We recommend continuing with the ScienCell Medium without FBS for an additional 2 weeks for more mature astrocytes.

## **Media Preparation**

#### 10 mM ROCK inhibitor Y27632 (iROCK)

- 1. Dissolve 10 mg ROCK inhibitor Y27632 in 3.12 ml DMSO.
- 2. Make aliquots of a convenient volume (e.g., 100 µl).
- 3. This solution, hereafter referred to as iROCK, can be stored at -20°C.

### 0.5X TrypLE Select with EDTA (Solution D1)

- 1. Mix 1.5 ml TrypLE Select Enzyme (1X) with 1.5 ml 0.02% EDTA in DPBS.
- 2. This mixture, hereafter referred to as Solution D1, can be stored at 4°C for 2 weeks.

#### Medium N1

- 1. Prepare Medium N1 using the reagents listed in the table below.
  - Thaw Component N1 for 20-30 minutes at the temperatures indicated in the "Contents" table on page 1.
  - Warm all other reagents at room temperature for 20-30 minutes.
  - o Tap each Component tube 3 times and then briefly spin them down before use.
  - Keep Medium N1, and any subsequent media made with it, protected from light.
  - Store Medium N1 for up to 2 weeks at 4°C.
  - Leftover reagents can be discarded or saved at 4°C for up to 2 weeks.

| Reagents                                       | Volume  |
|------------------------------------------------|---------|
| DMEM/F12                                       | 21.5 ml |
| Neurobasal                                     | 21.5 ml |
| GlutaMAX                                       | 225 µl  |
| Penicillin-Streptomycin (10000 units/ml; 100x) | 450 µl  |
| Component N1                                   | 1.35 ml |



Note: This protocol assumes that Day 0 is a Monday so Day -3 is Friday.

#### **Plate Preparation**

- 1. Prepare diluted iMatrix-511 silk by mixing together the following components in a 15 ml conical tube.
  - Keep iMatrix-511 silk on ice.
  - Make sure chilled PBS is used for this mixture.

| Reagents         | Volume  |
|------------------|---------|
| iMatrix-511 silk | 44.6 µl |
| Chilled PBS      | 13.5 ml |

- 2. Add 2 ml diluted iMatrix-511 silk to each new well of a new 6-well plate.
- 3. Incubate the plate at 4°C.

**Note:** For best results we recommend precoating the plate 1 day or up to a week before use and keeping at 4°C. Alternatively plates can be precoated on Day 0 and placed at 37°C for at least 2 hours before use.

## Day 0



Note: This protocol assumes that Day 0 is a Monday.

#### **Treatment**

- 1. Determine the number of wells required to get 2.0 x 10<sup>6</sup> cells from the source hPSC 6-well plate.
- 2. Prepare Medium iN1 by mixing together the following components in a 15 ml conical tube.
  - Warm Medium N1, iROCK, and Solution D1 at room temperature for at least 1 hour protected from light.
  - The rest of Medium N1 should be stored at 4°C for later use.

|           | Required medium volume based on # of wells of a 6-well plate |         |  |
|-----------|--------------------------------------------------------------|---------|--|
| Reagents  | 1 well                                                       | 2 wells |  |
| Medium N1 | 8.3 ml                                                       | 9.4 ml  |  |
| iROCK     | 8.3 µl                                                       | 9.4 μΙ  |  |

3. Referring to the table below, prepare the required volume of hPSC maintenance medium with iROCK in a new 15 ml conical tube. Mix well and allow to warm at room temperature for 20-30 minutes.

|                         | Required volume per # of wells of a 6-well plate |         |  |
|-------------------------|--------------------------------------------------|---------|--|
| Reagents                | 1 well                                           | 2 wells |  |
| hPSC maintenance medium | 1.5 ml                                           | 3.0 ml  |  |
| iROCK                   | 1.5 µl                                           | 3.0 µl  |  |

- 4. Aspirate old medium from hPSC culture and add 1.5 ml of hPSC maintenance medium with iROCK to each well.
- 5. Incubate the culture at 37°C, 5% CO<sub>2</sub> for 1 hour before harvesting cells.
  - This is to decrease cell death on Day 1 and minimize the loss of cells.

- During the incubation, start thawing QGA-SeV (undiluted) on ice and warming Solution D1 at room temperature.
- 6. Aspirate old medium from hPSC culture and add 2 ml PBS to each well being harvested.
- 7. Rock the plate 3 times, aspirate PBS from the culture, and add 300 µl of the cell dissociation reagent Solution D1 to each well.
  - Keep the rest of Solution D1 at 4°C for use on Day 4.
- 8. Incubate the culture plate at 37°C, 5% CO<sub>2</sub> for 5 minutes. If all the cells are not rounded under a microscope, continue to incubate at 37°C, 5% CO<sub>2</sub> in 1-2 minute increments (see images below).



- 9. Carefully pipet out Solution D1 from the culture and add 1 ml Medium iN1 to the well.
  - o Follow steps 9-11 one well at a time if multiple wells are used.
- 10. Disperse the medium over the bottom surface of the well by pipetting 8-15 times to detach cells.
- 11. Using the same pipet tip, collect the cell suspension in a 1.5 ml tube.

**IMPORTANT!** In this protocol, users will treat hPSCs with QGA-SeV (undiluted) in a tube and then plate the cells onto 6 wells with 1 ml Medium iN1 ( $3.0 \times 10^5$  cells) per well. However, we recommend preparing a suspension of 6.6 ml to avoid insufficiency. First, QGA-SeV (undiluted) should be mixed with 340 µl of a dense cell suspension to increase the chance that QGA-SeV (undiluted) finds its host cells. After 10 minutes incubation at 33°C, the total volume will be brought up to 6.6 ml with Medium iN1. Cell count may vary based on cell health, the method, and instrument used for cell counting.

- 12. Count cells and determine viability.
- 13. Take out the volume of the cell suspension needed for 6 wells and include 10% extra (a total of  $1.98 \times 10^6$  cells to plate  $0.3 \times 10^6$  cells in each of the 6 wells). Transfer the determined volume of the cell suspension into a 15 ml conical tube.
- 14. Bring the volume of the cell suspension up to 340 µl with Medium iN1.
  - $\circ$  If the volume of the cell suspension needed to get 1.98 x 10<sup>6</sup> cells exceeds 340 μl, centrifuge the required volume of cell suspension at 200 x g for 4 minutes, remove the supernatant, and resuspend the pellet into 340 μl Medium iN1.

**IMPORTANT!** Before adding QGA-SeV (undiluted), ensure that it is fully thawed. Do not centrifuge, vortex, or mix SeV with a pipettor; SeV is highly sensitive to physical stress.

- 15. Add all the contents of the QGA-SeV tube to the hPSCs and mix them by tapping with a finger 2-3 times. Cap the tube loosely to allow gas exchange.
- 16. Incubate the cell suspension at 33°C, 5% CO<sub>2</sub> for 10 minutes with intermittent mixing, by finger tapping, every 2 minutes.

#### **Plating**

- 1. Bring up the volume of cell suspension to 6.6 ml with Medium iN1 and mix 2-3 times with a serological pipet.
- 2. Aspirate PBS from only one coated well at a time and add 1 ml cell suspension to each well. Most of the PBS should be aspirated but not completely to prevent the coated wells from drying before adding the cell suspension. Likewise, the cell suspension should be added to the well immediately after PBS is removed. Handle one well after another.
- 3. Move the plate in 5 cycles of quick back-and-forth and side-to-side motions to evenly distribute treated cells in the cultures.

4. Incubate the culture plate at 33°C, 5% CO<sub>2</sub> overnight.

#### Day 1



#### **Medium Change**

- 1. Prepare Medium A1 by mixing together the following components in a 50 ml conical tube.
  - o Warm Medium N1 at room temperature for 20-30 minutes.
  - o Thaw 4 vials of Component GA1 on ice for 20 minutes.
  - Thaw 4 vials of Component GA2, protected from light, at room temperature for 20 minutes.
  - The rest of Medium A1 should be stored at 4°C for its use on Day 2.

| Reagents      | Volume |
|---------------|--------|
| Medium N1     | 30 ml  |
| Component GA1 | 60 µl  |
| Component GA2 | 60 µl  |

- 2. Pipet out the medium from each well, leaving a small volume behind to avoid the cells drying out, and add 1.5 ml Medium A1.
- 3. Incubate the culture plate at 33°C, 5% CO<sub>2</sub> overnight.

## Day 2



### **Medium Change and Temperature Shift**

Note: This should be performed in the late afternoon.

- 1. Warm Medium A1 at room temperature for 20-30 minutes.
- 2. Pipet out the medium from each well, leaving a small volume behind to avoid the cells drying out, and add 1.5 ml Medium A1.
- 3. Incubate the culture plate at 37°C, 5% CO<sub>2</sub> overnight.

## Day 3



**IMPORTANT!** Following this protocol, users will encounter cell death in the infected cultures. It will be most noticeable the day after making the temperature shift. When monitoring the health of infected cultures, please refer to the images in the appendix showing the recovery trajectory of a typical hPSC culture subjected to QGA-SeV-mediated differentiation. It is optional, but recommended, to include the PBS wash if cell death/floating cells are observed.

#### **Maintenance**

- 1. Warm Medium A1 at room temperature for 20-30 minutes.
- 2. Pipet out the medium from each well, leaving a small volume behind to avoid the cells drying out, and add 1.5 ml Medium A1
  - \*(Optional) Slowly add 1.5 ml PBS alongside the wall of each well to avoid lifting attached cells. Gently pipet out PBS before adding Medium A1.
- 3. Incubate the culture plate at 37°C, 5% CO<sub>2</sub> overnight.



### **Medium Change**

- 1. Prepare ScienceCell Medium with 2% FBS by mixing together the following components in a 50 ml conical tube.
  - Warm Basal Medium, Astrocyte Growth Supplement (AGS), and Pen/Strep (P/S) from the ScienCell kit at room temperature for 1 hour away from light.
  - Thaw FBS from the ScienCell kit at room temperature for 1 hour.
  - Aliquot and store unused AGS and FBS at -20°C and the Basal Medium and P/S at 4°C.

| Reagents     | Volume  |
|--------------|---------|
| Basal Medium | 80 ml   |
| AGS          | 830 µl  |
| P/S          | 830 μΙ  |
| FBS          | 1.67 ml |

- 2. Pipet out the old medium from each well, leaving a small volume behind to avoid the cells drying out.
- 3. Add 2.5 ml of ScienCell Medium with 2% FBS to each well, slowly along the wall of the well.
- 4. Incubate the cultures at 37°C, 5% CO<sub>2</sub> for 3 days.

## Days 7-16



#### **Maintenance**

- 1. Warm ScienCell Medium with 2% FBS at room temperature for 30 minutes.
- 2. Pipet out 1.25 ml of the old medium from each well.
- 3. Add 1.25 ml of ScienCell Medium with 2% FBS to each well, slowly along the wall of the well.
- 4. Incubate the cultures at 37°C, 5% CO<sub>2</sub>.
- 5. Repeat steps 1-4 every 2-3 days.

#### **Day 17**



#### ~2 hours

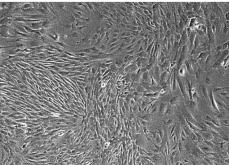
#### **New Plate Preparation**

**IMPORTANT!** Cells can be plated on 6-well, 24-well, or 96-well plates depending on the desired format. This kit can accommodate replating to all wells of either a 6-well, a 24-well, or a 96-well plate. Refer to the tables at the bottom of this page for the recommended volumes. Please note that the volumes are per plate in Table A and per well in Table B. Surplus cells can be frozen following the instructions in Appendix B.

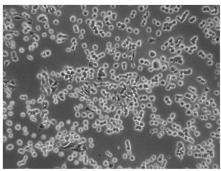
- 1. Aliquot the volume of Geltrex specified in Table A to a prechilled 15 ml conical tube and keep on ice.
- 2. Add Geltrex to wells according to Table B.
- 3. Incubate the plate at  $37^{\circ}$ C, 5% CO<sub>2</sub> for at least 1 hour or until cells are ready for plating. Alternatively, coating can be performed by incubating the plate at  $4^{\circ}$ C overnight.
- 4. Warm ScienCell Medium (without FBS) at room temperature for 30-40 minutes.
- 5. After the Geltrex incubation, aspirate most, but not all of, the supernatant and add ScienCell Medium (without FBS) in the volume specified in Table B.
- 6. Incubate the plate at 37°C, 5% CO<sub>2</sub> until cells are ready for plating.

Table A. Recommended volumes per plate for different plate formats.

|                                | Required volume per plate |               |               |  |
|--------------------------------|---------------------------|---------------|---------------|--|
| Reagents                       | 6-well plate              | 24-well plate | 96-well plate |  |
| Geltrex                        | 10 ml                     | 8 ml          | 5.3 ml        |  |
| ScienCell Medium (without FBS) | 16.5 ml                   | 20 ml         | 12 ml         |  |


Table B. Recommended volumes per well for different plate formats.

|                                | Required volume per well |               |               |  |
|--------------------------------|--------------------------|---------------|---------------|--|
| Reagents                       | 6-well plate             | 24-well plate | 96-well plate |  |
| Geltrex                        | 1.5 ml                   | 300 µl        | 50 µl         |  |
| ScienCell Medium (without FBS) | 1 ml                     | 400 µl        | 34 µl         |  |


## **Passaging Cells**

**IMPORTANT!** For the following steps, gently pipet and add solutions. Differentiating cells are delicate and should be handled with great care. Steps 2-10 below are critical. **Perform these steps one well at a time.** Refer to the images below to successfully manage cell treatment and dissociation.

Before Solution D1 Treatment



**After Solution D1 Treatment** 



- 1. Warm Solution D1 at room temperature for at least 1 hour before use.
- 2. Pipet out the old medium from one well and add 1 ml PBS and gently rock the plate.
- 3. Pipet out the PBS from the well and add 300 µl Solution D1.
- 4. Rock the plate 3 times to spread the Solution D1 evenly.
- 5. Incubate the cultures at 37°C, 5% CO<sub>2</sub> for 5 10 minutes.
- 6. Gently pipet out Solution D1 from the well and add 1 ml ScienCell Medium (without FBS) to the well along the wall of the well.
- 7. Disperse the medium quickly over the bottom surface of the well by pipetting 6-8 times to detach cells using a P1000 pipettor.
- 8. Observe cells and/or cell aggregates floating in the well under a microscope. It is normal that 10-20% of cells remain attached to the well bottom after pipetting. Do not attempt to detach all of the cells remaining on the well bottom.
- 9. Collect 1 ml cell suspension from the well and transfer to a tube.
- 10. Repeat steps 2-9 for the rest of the wells.
- 11. Gently pipet the cell suspension up and down up to 5 times to break the cell aggregates. Excessive pipetting can damage the already-suspended neuronal cells.
- 12. Count cells and determine viability.
- 13. Prepare  $0.5 \times 10^6$  viable cells/ml cell suspension using ScienCell Medium (without FBS) based on the table below.

- a. If there are leftover cells, freeze the cells down by following instructions (beginning at step 2) in Appendix B after plating cell suspensions to the new plate. Keep the leftover cells on ice until freezing.
- 14. Add cell suspension to the center of each well. Since each well already has ScienCell Medium (without FBS), the total volume of the medium in each well is indicated in the table below.

Note: The cell plating density recommended should result in confluent cultures in about two weeks. If users desire confluence in a shorter or longer period they should adjust the plating density accordingly. In addition, the density recommended may not be optimal for all hPSC cell lines as growth rates can vary depending on the hPSC cell line.

|                                                                                                                                  | Recommended amounts     |                           | unts                      |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|---------------------------|
|                                                                                                                                  | 6-well plate            | 24-well plate             | 96-well plate             |
| Viable cells/well                                                                                                                | $2.5 \times 10^5$ cells | 5 x 10 <sup>4</sup> cells | 8 x 10 <sup>3</sup> cells |
| Required volume of cell suspension (0.5 x $10^6$ viable cells/ml) $\circ$ (Vol of cell suspension/well x # of wells) + 10% extra | 3.3 ml                  | 2.64 ml                   | 1.6 ml                    |
| Volume of cell suspension/well                                                                                                   | 500 μl                  | 100 μΙ                    | 16 μΙ                     |
| Total volume/well  ScienCell Medium (without FBS) + cell suspension                                                              | 1.5 ml                  | 500 µl                    | 50 μΙ                     |

- 15. Move the plate in 5 cycles of quick back-and-forth and side-to-side motions to evenly distribute treated cells in the cultures.
- 16. Allow cells to attach by incubating the plate at room temperature for 10 minutes.
- 17. Incubate the cultures at 37°C, 5% CO<sub>2</sub> overnight.

## **Day 18**



√ < 1 hour
</p>

#### **Maintenance**

- 1. Warm ScienCell Medium (without FBS) at room temperature for 30-40 minutes.
- 2. Pipet out the old medium from each well, leaving a small volume behind to avoid the cells drying out.
- 3. Add ScienCell Medium (without FBS) to each well according to the table below.
- 4. Incubate the cultures at 37°C, 5% CO<sub>2</sub> for 2-3 days.

|                                | Required volume per well |               |               |  |
|--------------------------------|--------------------------|---------------|---------------|--|
| Reagents                       | 6-well plate             | 24-well plate | 96-well plate |  |
| ScienCell Medium (without FBS) | 2.5 ml                   | 1 ml          | 0.25 ml       |  |

## **Days 20-27**



< 1 hour

#### **Maintenance**

- 1. Warm ScienCell Medium (without FBS) at room temperature for 30-40 minutes.
- 2. Pipet out half of the volume of old medium from each well (see Table above).
- 3. Add an equal volume of fresh ScienCell Medium (without FBS) to each well.
- 4. Incubate the cultures at 37°C, 5% CO<sub>2</sub>.
- 5. Repeat steps 2-4 every 2-3 days, making more ScienCell Medium as needed following the instructions above.

### **Assay or Continuous Maturation**

- CD44, S100β, GFAP, and ALDH1L1-positive cells can be detected on Day 28.
- For more mature astrocytes with increased expression of GFAP and ALDH1L1, we recommend culturing cells until Day 42. When cells approach confluence they can be passaged following the instructions on Day 17, though maintaining them at higher confluency results in higher GFAP expression.
- From Day 28, users may maintain differentiated astrocytes in the maintenance medium best suited for their needs, though we recommend ScienCell Astrocyte Medium without FBS.
- Cells can be frozen following the instructions in Appendix B.

## **Appendix A**

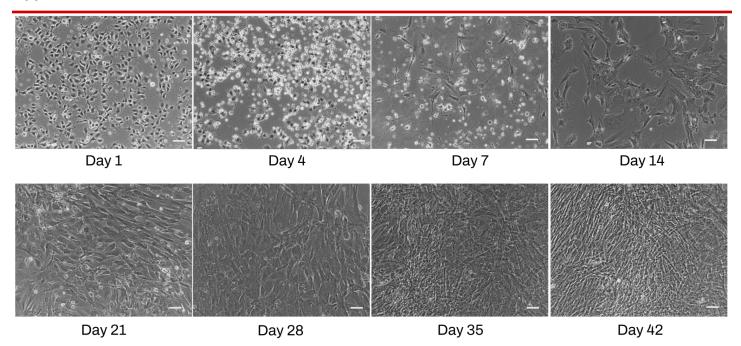



Figure 1. Representative images of Quick-Glia™ Astrocyte - SeV Kit (Small) cell cultures on days 1, 4, 7, 14, 21, 28, 35 and 42 post-differentiation (scale bar = 100 μm). User's cultures may display a slightly lower level of confluency on each day due to minor differences between small and large Quick-Glia™ Astrocyte - SeV Kit formats.



Figure 2. (A) Gene expression profiles of iPSCs and Quick-Glia<sup>™</sup> - Astrocyte SeV Culture on day 28 were compared with the profile of human primary astrocytes and the results are shown as scatter plots. The horizontal axis indicates the expression levels of genes in human primary astrocytes purchased from ScienCell (Catalog Number: 1800-5), whereas the vertical axis indicates the expression levels of genes in iPSCs (left) and in Quick-Glia<sup>™</sup> - Astrocyte SeV Culture on day 28 (right). The levels of gene expression are shown based on transcripts per million (TPM) in the log10 scale. Blue and green dots represent upregulated and downregulated genes (FDR<0.05), respectively, relative to their levels in human primary astrocytes. (B) Similarities of gene expression profiles of human iPSCs and Quick-Glia<sup>™</sup> - Astrocyte SeV Culture on days 14, 28 and 42 to the profile of human primary astrocytes are shown as a bar chart. The vertical axis indicates Pearson correlation (r) based on median-subtracted logTPM.



Figure 3. Real-time quantitative PCR analysis of expression levels of astrocyte-associated genes CD44, GFAP, S100β and ALDH1L1 were examined. Graphs show comparison of gene expression in Quick-Glia<sup>TM</sup> - Astrocyte SeV Culture on day 28 (A) and day 42 (B) with gene expression in human brain total RNA (TaKaRa, Catalog Number: 636530). The relative gene expression is normalized to phosphoglycerate kinase 1 (PGK1), and then calculated as a fold induction relative to undifferentiated hPSCs as a control. Error bars show standard deviation. Primers used are listed in Table 1.

Quick-Glia - Astrocyte

SeV Culture

ALDH1L1

S100ß

Table 1. List of PCR primers used in Figure 3

| Gene    | Forward primer        | Reverse Primer         | Primer Concentration |
|---------|-----------------------|------------------------|----------------------|
| CD44    | CTGCCGCTTTGCAGGTGTA   | CATTGTGGGCAAGGTGCTATT  | 250 nM               |
| GFAP    | ATCGAGAAGGTTCGCTTCCTG | TGTTGGCGGTGAGTTGATCG   | 250 nM               |
| S100β   | GGCTGGTCTCAAACTTCCTG  | TCCACAACCTCCTGCTCTTT   | 250 nM               |
| ALDH1L1 | TCACAGAAGTCTAACCTGCC  | AGTGACGGGTGATAGATGAT   | 250 nM               |
| PGK1    | GTATGCTGAGGCTGTCACTCG | CCTTCCAGGAGCTCCAAACTGG | 250 nM               |

## **Appendix B**

#### **Freezing Cells Down**

**Note:** After thawing frozen cells, approximately 80% of cells will be viable.

- 1. Follow steps 1-12 in the "Passaging cells" section of Day 17.
- 2. Determine the volume of the cell suspension and number of cryovials needed to freeze 1-4 x 10<sup>6</sup> cells per cryovial.
- 3. Centrifuge at 200 x g for 4 minutes.
- 4. While waiting for the centrifugation, label each cryovial. We recommend writing the name of the iPSC line used, the type of neurons, harvesting day and date, and the number of cells in the vial.
- 5. Aspirate the supernatant and resuspend the pellet with 0.5 ml/vial STEM-CELLBANKER.
- 6. Distribute 0.5 ml of the suspension to each cryovial.
- 7. Make sure that the caps are closed tightly and transfer the cryovials into a Mr. Frosty Freezing Container. Make sure that Mr. Frosty contains 250 ml isopropanol.
- 8. Loosely close the lid of Mr. Frosty with cryovials, put it into a -80°C freezer and leave it overnight or up to a few days.
- 9. Transfer the cryovials into a liquid nitrogen storage tank.
- 10. Follow the thawing instructions in the user guide for Quick-Glia™ Astrocyte Human iPSC-derived Astrocytes, Catalog Number: AS-SeV-CW.